## Statistics

Lecture 7


Feb 19-8:47 AM

$$
\begin{aligned}
& \text { Class QZ } 10 \\
& \text { Given } P(A)=.8, P(B)=.4, P(A \text { and } B)=.3 \\
& \begin{aligned}
\text { 1) Construct the Venn Diagram } \quad \text { 2) } P(\bar{A})=1-.8
\end{aligned} \\
& \begin{aligned}
\text { 4) } P(A \text { or } B) & =P(A)+P(B)-P(A \text { and } B) \\
& =.8+.4-.3=.9
\end{aligned} \\
& \begin{aligned}
P(\bar{A} \text { and } \bar{B})=P(\overline{A \text { or } B})=1-.9=.1 \\
\text { De Morgan'sLaw }
\end{aligned} \\
& P(\bar{A} \text { or } \bar{B})=P(\overline{A \text { and } B})=1-.3=.7 \\
& P(A \text { onlY OR } B \text { onlY })=.5+.1=.6
\end{aligned}
$$

Class QZ $q$
Given $P(A)=.7, P(B)=.1$
M.E.E.
$A$ and $B$ are disjoint events.

1) Draw Venn Diagram


Total $=1$
2) Find $P(A$ and $B)$
3) find $P(A \circ B)$

$$
\begin{aligned}
& =.7+.1-0 \\
& =.8 \mathrm{~V}
\end{aligned}
$$

Suppose $P(A)=.5, P(B)=.4$,
$A$ and $B$ are independent events.

1) $P(\bar{B})=1-.4=6$
2) $P(A$ and $B)=P(A) \cdot P(B)=(.5)(.4)=.2$
3) $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)=$ $.5+.4-.2=7$
4) Make Vern Diagram


Suppose we Slip a loaded coin twice.

$$
P(T)=.7, P(H)=.3
$$



$$
\begin{aligned}
& P(2 \text { Tails })=(.7)(.7)=.49 \\
& P(1 \text { Tails })=P(\text { TH or HT })=2(.7)(.3)=.42 \\
& P(\text { No Tails })=P(H H)=(.3)(.3)=.09
\end{aligned}
$$

Prob. with at least one:

$$
\begin{aligned}
P(\text { at least one }) & =1-P(\text { None }) \\
P(\text { at least } 1 \text { Tail }) & =1-P(\text { No tails }) \\
& =1-P(H H) \\
& =1-.09=.91
\end{aligned}
$$

$$
P(\text { at least } 1 \text { Head })=1-P(\text { No Heads })
$$

$$
=1-P(T T)
$$

$$
=1-.49=.51
$$

There are 3 Females $\dot{\text { E }}$ Males. Select 2 people without replacement


$$
\begin{aligned}
& P(2 \text { females })=\frac{3}{5} \cdot \frac{2}{4}=1 \\
& P(1 F \cdot, 1 M)=2\left(\frac{3}{5} \cdot \frac{2}{4}\right)=.6 \\
& P(2 \text { males })=\frac{2}{5} \cdot \frac{1}{4}=1 \\
& P(\text { at least } 1 \text { female })=1-P(\text { NO Female }) \\
&=1-P(M M)=1-1=0.9 \\
& P(\text { at least } 1 \text { male })=1-P(\text { No male }) \\
&=1-P(F F) \\
&=1-.3=.7
\end{aligned}
$$

Oct 10-7:23 PM

A standard deck of playing cards has 52 Cards, 26 Red, 12 face, and 4 aces. Draw 3 Cards, No replacement.

$$
\begin{aligned}
& P(\text { All Red })=\frac{26}{52} \cdot \frac{25}{51} \cdot \frac{24}{50}=\frac{2}{17} \\
& P\left(A \| A(e 5)=\frac{4}{52} \cdot \frac{3}{51} \cdot \frac{2}{50}=\frac{1}{5525}\right.
\end{aligned}
$$

$P($ at least 1 face Card) $=1-P($ No Face Cards) 40 F
$12 F$

$$
\begin{aligned}
& =1-\frac{40}{52} \cdot \frac{39}{51} \cdot \frac{38}{50} \\
& =\frac{47}{85}
\end{aligned}
$$

I tossed a coin 200 times, and it landed 125 tails.

1) Odds in favor of landing tails.
\# Tails: \# Tails

$$
\begin{equation*}
125: 75 \tag{a}
\end{equation*}
$$

2) odds against landing tails.

$$
3: 5
$$

odds in favor of LA Rams win the SB This year are 3:47
$\$ 3$ bet $\rightarrow \$ 47$ Net

1) odds against $47: 3$
2) $P(\omega)=\frac{3}{3+47}=\frac{3}{50}=.06$
3) $p(\bar{w})=\frac{47}{3+47}=\frac{47}{50}=.94$

Suppose $P(E)=.02$

1) $P(\bar{E})=1-P(E)=1-.02=.98$
2) odds in favor of $E$.

$$
\begin{aligned}
& P(E): P(\bar{E}) \\
& .02: .98 \rightarrow 1: 49
\end{aligned}
$$

3) odds against E. $\rightarrow 49: 1$

Multiplication General Rule:

$$
\begin{aligned}
& P(A \text { and } B)=P(A) \cdot P(B \mid A) \\
& A \text { happens, } \\
& \text { Then } B \text { happens. Given }
\end{aligned}
$$

4 Females and 6 Males.
Select a people, NO replacement

$$
P(\text { Female, then Male })=\frac{24}{\frac{40}{5}} \cdot \frac{2}{q_{3}}=\frac{4}{15}
$$

$$
P(\text { Male, then another male })=\frac{x_{6}}{1 \theta_{2}} \cdot \frac{5^{\prime}}{x_{3}}=\frac{1}{3}
$$

$$
\begin{aligned}
& P(A \text { and } B)=P(A) \cdot P(B \mid A) \\
& P(B \mid A)=\frac{P(A \text { and } B)}{P(A)} \begin{array}{c}
\text { conditional } \\
\text { Prob. }
\end{array} \\
& P(A)=.5 \\
& P(B)=.4 \\
& P(A \text { and } B)=.3 \\
& P(B \mid A)=\frac{P(\operatorname{Pand} B)}{P(A)}=\frac{.3}{.5}=.6 \\
& P(A \mid B)=\frac{P(A \text { and } B)}{P(B)}=\frac{.3}{.4}=.75
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { iPhone })=.7 \\
& P(\text { MAC })=.3
\end{aligned}
$$

$$
p(\text { iphone and MAC })=.2
$$

$$
P(\text { MAC }) \text { iphone })=\frac{P(\text { iphone and MAC })}{P(\text { i Phone })}=\frac{.2}{.7}=\frac{2}{7}=.286
$$

$$
P(\text { iphone } \mid M A C)=\frac{P(\text { iphone and MAC) }}{P(M A C)}=\frac{.2}{.3}=\frac{2}{3}=.667
$$

$$
\begin{array}{lr}
P(\text { shirt })=.6 \\
P(\text { pants })=.5 & \underbrace{P(\text { shirt | Pants })}=\frac{P(S \text { and } P)}{P(P)} \\
P(\text { shirt } \mid \text { Pants })=.8 & P=\frac{P(S \text { and } P)}{.5} \\
P(\text { shirt and Pants }) \\
=(6)(.5)=.3 & \text { Cross - MulTiply } \\
P(S \text { and } P)=.4
\end{array}
$$

4 females, 6 Males, Select 3 people, No
 replacement

$$
\begin{aligned}
P(\text { all Females }) & =\frac{4}{10} \cdot \frac{3}{9} \cdot \frac{2}{8} \\
& =\frac{1}{30}
\end{aligned}
$$

$$
\begin{aligned}
P(\text { at least } 1 \text { female }) & =1-P(\text { No Females }) \\
& =1-\frac{1}{6}=\frac{5}{6} \\
P(\text { at least } 1 \text { Male }) & =1=P(N 0 \text { males) } \\
& =1=\frac{1}{30}=\frac{29}{30}
\end{aligned}
$$

${ }^{n}{ }^{C}$ Combination $n$ different objects
Select $r$ of them
no replacement, order does not matter.

$$
\begin{aligned}
& { }_{n} C_{r}=\frac{n!}{r!\cdot(n-r)!} \quad \text { matter. } \\
& { }_{5} C_{3}=\frac{5!}{3!\cdot(5-3)!}=\frac{5!}{3!\cdot 2!}=\frac{5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{3 \cdot 2 \cdot 1 \cdot 2 \cdot 1} \\
& 5 \text { MATH PRS } 3: n^{C_{r}} \text { Enter } 550 \text { [10 }
\end{aligned}
$$

A basketball team has 12 players, and we need 5 of them to start. How many ways can this be done?

$$
12^{C} 5
$$

12 MATH PRS $3: n C_{r} 5$ Enter 792
CA Lotto: 50 numbers, choose 5 How many Selections?

$$
{ }_{50} C_{5}=2,118,760
$$

4 Females, 6 Males, Select 3 people, Order does not matter, No replacement.

1) How many ways can this be done?

$$
{ }_{10}{ }^{C}{ }_{3}=120
$$

2) How many ways can we Select 3 females?

$$
{ }_{4} C_{3}=4
$$

3) $P(3$ females $)=\frac{4^{C_{3}}}{10_{3}}=\frac{4}{120}=\frac{1}{30}$
4) How many ways can we Select 3 Males?

$$
{ }_{6}{ }_{3}=20
$$

5) $P(3$ Males $)=\frac{{ }_{6} C_{3}}{{ }_{10} C_{3}}=\frac{20}{120}=\frac{1}{6}$
6) $P\left(1 F \dot{\varepsilon}_{2} 2 m\right)=\frac{4^{C_{1}} \cdot{ }^{C_{2}}}{10^{C_{3}}}=\frac{60}{120}=\frac{1}{2}$
7) $P\left(2 F \dot{\varepsilon}_{1}, 1 m\right)=\frac{4^{C_{2}} \cdot{ }^{C} 1}{10^{C} 3}=\frac{36}{120}=\frac{3}{10}$

Oct 10-8:39 PM

A standard deck of playing cards has 52 cards, 12 face, and 4 Aces.
Select 5 cards,

$$
\begin{aligned}
& \text { Select } 5(3 F \text { and } 2 A)=\frac{1 C^{C_{3} \cdot 4^{C_{2}}}}{52^{C_{5}}} \\
& \\
& =\frac{1320}{2598960 \approx 5.1 \times 10^{-4}} \\
& P(2 F \text { and } 3 A)
\end{aligned}=\frac{12^{C_{2} \cdot 4^{C} 3}}{52^{C_{5}}}
$$

A box has 2 Red, 3 white, and 5 Blue color balls Select 3 balls, no replacement

$$
\begin{aligned}
P(\text { one of each color }) & =\frac{2 C_{1} \cdot 3 C_{1} \cdot 51}{10^{C} C_{3}} \\
& =\frac{30}{120}=\frac{1}{4} \\
P(2 \text { white } \dot{\varepsilon}, ~ B \text { Blue }) & =\frac{2 C_{0} \cdot 3 C_{2} \cdot{ }_{5} C_{1}}{1 C^{C_{3}}} \\
& =\frac{15}{120}=\frac{1}{8} \\
P(1 \text { white } \dot{\varepsilon} .2 \text { Blue }) & =\frac{2 C_{0} \cdot{ }_{3} C_{1} \cdot{ }_{5} C_{2}}{1 C^{C_{3}}}=\frac{30}{120}=\frac{1}{4}
\end{aligned}
$$

| $L 1$ | $L 2$ |
| :--- | :--- |
| 1 | .1 |$\quad$ class QZ 11

Use 1 -Var stats with $L 1 \varepsilon$.
L2 to find

1) $\bar{x}=3$
2) $S_{x}=$ blank
3) $n=1$
